Multiple Positive Solutions for Elliptic Boundary Value Problems
نویسندگان
چکیده
منابع مشابه
Multiple Positive Solutions for Elliptic Boundary Value Problems
We extend ODE results of Henderson and Thompson, see [10], to a large class of boundary value problems for both ODEs and PDEs. Our method of proof combines upper and lower solutions with degree theory.
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملMultiple Solutions For Semilinear Elliptic Boundary Value Problems At Resonance
In recent years several nonlinear techniques have been very successful in proving the existence of weak solutions for semilinear elliptic boundary value problems at resonance. One technique involves a variational approach where solutions are characterized as saddle points for a related functional. This argument requires that the Palais-Smale condition and some coercivity conditions are satisfie...
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملMultiple Positive Solutions for Nonlinear Fractional Boundary Value Problems
This paper is devoted to the existence of multiple positive solutions for fractional boundary value problem DC0+αu(t)=f(t, u(t), u'(t)), 0<t<1, u(1)=u'(1)=u''(0)=0, where 2<α≤3 is a real number, DC0+α is the Caputo fractional derivative, and f:[0,1]×[0, +∞)×R→[0, +∞) is continuous. Firstly, by constructing a special cone, applying Guo-Krasnoselskii's fixed point theorem and Leggett-Williams fix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2006
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181069490